Home
Class 12
MATHS
If y=x^(y^(x)), prove that, (dy)/(dx)=(y...

If `y=x^(y^(x))`, prove that, `(dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= x^(y^x) , prove that y_1 = (ylogy(1+x logx logy)/(x log x (1-xlogy))

If ye^y=x prove that (dy)/(dx)= y/(x(1+y))

If ye^(y)=x , prove that, (dy)/(dx)=(y)/(x(1+y)) .

If y^(x)=e^(y-x)" prove that, " (dy)/(dx)=((logey)^(2))/(log y) .

If x^(logy)=logx , prove that, (x)/(y).(dy)/(dx)=(1-logx log y)/((log x)^(2))

If x^(y) =e^(x-y) , prve that , (dy)/(dx) =(logx)/((log ex)^(2)) .

If y=a^(x^(a^(x^(…oo)))) , show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x log y)) .

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

If x^y=e^(x-y) , Prove that dy/dx=logx/(1+logx)^2