Home
Class 12
MATHS
If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)...

If `x^(2)+y^(2)=t-(1)/(t)` and `x^(4)+y^(4)=t^(2)+(1)/(t^(2))`, show that,
`x^(3)y(dy)/(dx)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) , then the value of -x^(3)y(dy)/(dx) is -

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then show that (dy)/(dx)=-(y)/(x) .

If x^2+y^2= t-1/t and x^4+y^4 = t^2+1/t^2 ,show that , x^3y (dy)/(dx) = 1 .

If x^2+y^2=t+1/t and x^4+y^4=t^2+1/t^2 then (dy)/(dx)=

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2, then x^3y (dy)/(dx)= (a) 0 (b) 1 (c) -1 (d) none of these

If x=(sin^(3)t)/(sqrt(cos 2t)) and y=(cos^(3)t)/( sqrt(cos 2t)) , show that (dy)/(dx)=0 at t=(pi)/(6) .

If y^2 (1-x^2) = x^2 +1 , show that (1-x^4) (dy/dx)^2 = y^4 -1 .

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If x = sqrt(a^(sin^(-1)t)) and y= sqrt(a^(cos^(-1)t) show that (dy)/(dx)= -y/x .

"Let "y=t^(12)+1 and x=t^(6)+1." Then "(d^(2)y)/(dx^(2)) is