Home
Class 12
MATHS
If 2y=x(1+(dy)/(dx)), prove that, (d^(2)...

If `2y=x(1+(dy)/(dx))`, prove that, `(d^(2)y)/(dx^(2))`=constant.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=((1+x)/(1-x))^(n) , prove that (1-x^(2))(d^(2)y)/(dx^(2))=2(n+x)(dy)/(dx).

If y=(x)/(x+2) prove that x(dy)/(dx)=y(1-y)

If y=sqrt((1-x)/(1+x)) , prove that , (1-x^(2)) (dy)/(dx)+y=0

If y=sqrt((1-x)/(1+x)) ,prove that (1-x^2)dy/dx+y=0

(x-y)^(2)(dy)/(dx)=1

If e^y(x+1)=1 , prove that (d^2y)/(dx^2)=((dy)/(dx))^2

If y=x+(1)/(x+(1)/(x+…oo)) , prove that (dy)/(dx)=(y)/(2y-x) .

If y=xlog (x/(a+bx)) , prove that x^3(d^2y)/(dx^2)=(y-xdy/dx)^2 .

If (a+bx)e^((y)/(x))=x , show that, x^(3)(d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(2) .

If y= 3e^(2x)+2e^(3x) , prove that (d^(2)y)/(dx^(2))-5(dy)/(dx)+6y=0 .