Home
Class 12
MATHS
If x=sqrt(3)(3 sin theta+sin 3theta), y=...

If `x=sqrt(3)(3 sin theta+sin 3theta), y=sqrt(3)(3 sin theta+cos 3 theta)`, find `(d^(2)y)/(dx^(2))` at `theta=(pi)/(3)`.

Text Solution

Verified by Experts

The correct Answer is:
`(16sqrt(3))/(9)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=acos^(3)theta" and "y=bsin^(3)theta , then find (d^(2)y)/(dx^(2)) at theta=(pi)/(4).

sin theta + sin 5 theta = sin 3theta (0 le theta le 2pi)

If x=2cos theta -cos2 theta and y=2sin theta -sin2 theta , find (d^2y)/(dx^2) at theta=pi/2 .

If x=a(theta+sin theta) and y=a(1-costheta) , find (d^2y)/(dx^2)"at"theta=pi/2

If tan(theta+15^@)= sqrt3 then sin theta+ cos theta =?

Eliminate theta : x=2 sin theta, y=3 cos theta.

If x=asec^3theta and y=atan^3theta , find (dy)/(dx) at theta=pi/3dot

If x=2 cos theta-cos 2 theta and y=2 sin theta-sin 2 theta , then the value of (d^(2)y)/(dx^(2)) at theta=(pi)/(2) is -

cos^(3)theta sin 3theta + sin^(3)theta cos3theta=3/4

If sqrt3 cos theta + sin theta = sqrt2, then the general value of theta is-