Home
Class 12
MATHS
IF y=f(x^(2)) and f'(x)=sqrt(3x^(2)+1), ...

IF `y=f(x^(2))` and `f'(x)=sqrt(3x^(2)+1)`, find `[(dy)/(dx)]_(x=2)`.

Text Solution

Verified by Experts

The correct Answer is:
28
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=f(x^(2)) and f'(x)=sqrt(3x^(2)+1) then the value of (dy)/(dx) at x=2 is -

If y=f((2x-1)/(x^2+1)) and f^'(x)=sinx^2 , then find (dy)/(dx)

If f'(x)=sin(logx) and y=f((2x+3)/(3-2x)) , find (dy)/(dx) .

If y=4x*root(3)((x^(2)+2)/(3x-7)) , find [(dy)/(dx)]_(x=5)

If y=sin(x^2-3x) , then find dy/dx

If f(x)=3x^2-x+1 , then find f(-2) .

If f(x)=3x^2-x+1 , then find f(-1)

If f(x)=3x^2+2x+1 , then find f(x-1)

if y=f{f(x)},f(0)=0and f'(0)=5 find [dy/dx]_(x=0)

If f(x)=x+int_0^1(xy^2+x^2y) dy find f(x)