Home
Class 12
MATHS
If e^(x)+x=e^(y), Find, (d^(2)y)/(dx^(2)...

If `e^(x)+x=e^(y)`, Find, `(d^(2)y)/(dx^(2))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^y(x+1)=1 , find (d^2y)/(dx^2)

"If "y=sin^(-1)x, "find "(d^(2)y)/(dx^(2)) .

If y=e^(ax)cos bx , Then find [(d^(2)y)/(dx^(2))]_(x=0)

If y=a e^(m x)+b e^(-m x), then (d^2y)/(dx^2) is equals to

"If "y= cos x +e^(4x)," then "(d^(2)y)/(dx^(2))=

If y=cos^(-1)x ,find (d^2y)/(dx^2) .

If y=e^(7x) +e^(-7x) , show that (d^(2)y)/(dx^(2))= 49y .

If e^(y)(x+1)=1 , show that (d^(2)y)/(dx^(2)) = ((dy)/(dx))^(2) .

If x y=e^((x-y)), then find (dy)/(dx)

If x=e^z then x^2(d^2y)/(dx^2) is