Home
Class 12
MATHS
If xsqrt(1-y^(2))+ysqrt(1-x^(2))=k, find...

If `xsqrt(1-y^(2))+ysqrt(1-x^(2))=k`, find `[(d^(2)y)/(dx^(2))]_(x=0)`

Text Solution

Verified by Experts

The correct Answer is:
`-k`
Promotional Banner

Similar Questions

Explore conceptually related problems

xsqrt(1-y^(2))dx+ysqrt(1+x^(2))dy=0

xsqrt(y^(2)-1)dx-ysqrt(x^(2)-1)dy=0

If e^y(x+1)=1 , find (d^2y)/(dx^2)

"If "y=sin^(-1)x, "find "(d^(2)y)/(dx^(2)) .

If x sqrt(1-y^(2))+y sqrt(1-x^(2))=k , then the value of (dy)/(dx) at x=0 is -

If y=(x sin^(-1)x)/(sqrt(1-x^(2)))+logsqrt(1-x^(2)) , then the value of (d^(2)y)/(dx^(2)) at x=0 is -

If y=(x)/(x+2) find (d^2y)/dx^2

If x^2+y^2=25 , find (d^2y)/(dx^2) at x=0.

Show that the general solution of the differential equation sqrt(1-x^(2))dy+sqrt(1-y^(2))dx=0 is xsqrt(1-y^(2))+ysqrt(1-x^(2))=c , where c is an arbitray constant.

If y=(x+sqrt(1+x^(2)))^(n) , then (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to -