Home
Class 12
MATHS
If cos^(-1)((y)/(b))=log((x)/(n))^(n), p...

If `cos^(-1)((y)/(b))=log((x)/(n))^(n)`, prove that, `x^(2)y_(2)+xy_(1)+n^(2)y=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=px^(n)+qx^(-n) , show that x^(2)y_(2)+xy_(1)-n^(2)y=0 .

If y=xe^(-(1)/(x)) , prove that, x^(3)y_(2)-xy_(1)+y=0 .

If y=sin(logx), prove that , x^2y_2+xy_1+y=0 .

If y=x log((1)/(ax)+(1)/(a)) , prove that, x(x+1)y_(2)+xy_(1)=y-1 .

If y= 2^((1)/(log_(x)4)) then prove that x=y^(2) .

If y=log (1+ sin x) , prove that y_(4)+y_(3)y_(1)+y_(2)^(2)=0 .

IF y=x^2 cosx, prove that , x^2y_2-4xy_1+(x^2+6)y=0 .

IF y=cos (m sin^-1 x), prove that , (1-x^2)y_2-xy_1+m^2y=0 .

If y=e^x , Prove that , xy_2-(2x-1)y_1+(x-1)y=0 .

If y=((1+x)/(1-x))^(n) , prove that (1-x^(2))(d^(2)y)/(dx^(2))=2(n+x)(dy)/(dx).