Home
Class 12
MATHS
If x+y=e^(x-y), prove that, (d^(2)y)/(dx...

If `x+y=e^(x-y)`, prove that, `(d^(2)y)/(dx^(2))=(4(x+y))/((x+y+1)^(3))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^y(x+1)=1 , prove that (d^2y)/(dx^2)=((dy)/(dx))^2

If y=e^(7x) +e^(-7x) , show that (d^(2)y)/(dx^(2))= 49y .

If e^x+e^y=e^(x+y) , prove that dy/dx=-e^(y-x)

If ye^(y)=x , prove that, (dy)/(dx)=(y)/(x(1+y)) .

If y= 3e^(2x)+2e^(3x) , prove that (d^(2)y)/(dx^(2))-5(dy)/(dx)+6y=0 .

If x+y=e^(x-y) then the value of (d^(2)y)/(dx^(2)) is -

If e^(y)(x+1)=1 , show that (d^(2)y)/(dx^(2)) = ((dy)/(dx))^(2) .

If y= 5 cos x-3 sin x , prove that (d^(2)y)/(dx^(2))+y=0 .

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0

"If "y= cos x +e^(4x)," then "(d^(2)y)/(dx^(2))=