Home
Class 12
MATHS
If f (x) is differentiable and f'(4) =5,...

If `f (x)` is differentiable and `f'(4) =5,` then the vlaue of `lim_(xto2) (f(4) -f(x^(2)))/(x-2)` is equal to-

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function and f'(4)=5 . Then lim_(x to 2) (f(4) -f(x^(2)))/(x-2) equals

If f''(0)=k,kne0 , then the value of lim_(xto0)(2f(x)-3f(2x)+f(4x))/(x^2) is

If f(2)=4,f'(2)=4 , then evalute lim_(xto2)(xf(2)-2f(x))/(x-2) .

Let f(2) =4and f '(2) =4, then lim _(xto2)(x f(2) -2f(x))/(x-2) is equal to-

Let f(x) be a differentiable function and f'(4)=5 . Then lim_(xrarr2)(f(4)-f(x^2))/(x-2) equals

Let f(x) be a differentiable function and f'(4)=5 . Then underset(x to2)lim(f(4)-f(x^(2)))/(2(x-2)) equals-

If f(x) is differentiable and strictly increasing function, then the value of lim_(xto0)(f(x^2)-f(x))/(f(x)-f(0)) is

Let f:R to R be a differentiable function and f(1)=4 and f'(1)=2 , then the value of lim_(x to 1) int_(4)^(f(x))(2t)/(x-1)dt is -

If f''(0)=k,kne0 then the value of lim_(xrarr0)(2f(x)-3f(2x)+f(4x))/(x^(2)) is

If f (1) =1 f'(1)=2 then the value of lim _(xto1) (sqrt(f(x))-1)/(sqrtx-1) is-