Home
Class 12
MATHS
If h(x)=[f(x)]^(2)+[g(x)]^(2) and f'(x)=...

If `h(x)=[f(x)]^(2)+[g(x)]^(2)` and f'(x)=g(x),
`f''(x)=-f(x)`, h(5)=10 find h(10).

Text Solution

Verified by Experts

The correct Answer is:
10
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sinx, g(x)=x^2 and h(x)=log x, find h[g{f(x)}].

If g(x)=x^(2)+x-2 and (g o f)(x)=2(2x^(2)-5x+2) , then f(x)=

Let f be a twice differentiable function such that f"(x) = -f(x) , and f'(x) = g(x) , h(x)=[f(x)]^2+[g(x)]^2 Find h(10), if h(5) = 11

Let f(x)=sqrt(x-2) , g(x)= sqrt(5-x) find f(x)+g(x), f(x)-g(x), f.g., (f/g)

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). Then find the function f(x) and g(x) .

Let f(x)=(1)/(1+x^(2)) and g(x) is the inverse of f(x) ,then find g(x)

If f is a twice differentiable function such that f''(x)=-f(x),f'(x)=g(x) ,h(x)=[f(x)]^2+[g(x)]^2 if h(5)=11, then h(10) equals

If '' (x)=-f(x) and g(x)=-f'(x) and F(x)=(f(x/2))^2 + (g(x/2))^2 and given that f(5)=5, then f(10) is equal to

If f(x)=e^(x+a) , g(x)=x^(b^2) and h(x)=e^(b^2x) ,show that (g[f(x)])/(h(x))=e^(ab^2)

If f(x-y)=f(x).g(y)-f(y).g(x) and g(x-y)=g(x).g(y)+f(x).f(y) for all x in R . If right handed derivative at x=0 exists for f(x) find the derivative of g(x) at x =0