Home
Class 12
MATHS
If f(x+y)=f(x)f(y) for all real x and y ...

If f(x+y)=f(x)f(y) for all real x and y and f(5)=2, f'(0)=3 ,find f'(5).

Text Solution

Verified by Experts

The correct Answer is:
6
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x+y)=f(x). f(y) for all x and y and f(5)=2, f'(0)=4, then f '(5) will be

If f(x+y)=f(x)+f(y) for all real x and y, show that f(x)=xf(1) .

If f(x+y+z)=f(x)f(y)f(z)ne0 , for all x, y, z and f(2)=4,f'(0)=3 , find f'(2) .

If f(x+y+z)=f(x) f(y) f(z) ne 0 for all x,y,z and f(2)=5, f'(0)=2, find f'(2).

If f(x)f(y) = f(x) + f(y) + f(xy) -2 for all real values of x and y and f(2) = 5, find f(4) and f(1/4) .

Let f((x+y)/2)=(f(x)+f(y))/2 for all real x and y. If f'(0) exists and equals-1 and f(0)=1, find f(2)

Let f(x+y)=f(x)+f(y)+2x y-1 for all real x and y and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, the prove that f(x)>0AAx in Rdot

Let f((x+y)/(2))=(1)/(2)[f(x)+f(y)] for all real x and y. If f'(0) exists and equals (-1),f(0)=1 , find f(2).

Let f((x+y)/(2))=1/2 |f(x) +f(y)| for all real x and y, if f '(0) exists and equal to (-1), and f(0)=1 then f(2) is equal to-