Home
Class 12
MATHS
If y=t^(2)+t^(3) and x=t-t^(4), then fin...

If `y=t^(2)+t^(3)` and `x=t-t^(4)`, then find `(d^(2)y)/(dx^(2))`.

Text Solution

Verified by Experts

The correct Answer is:
`(12t^(4)+16t^(3)+2)/((1-4t^(3))^(3))(t^(3) ne (1)/(4))`
Promotional Banner

Similar Questions

Explore conceptually related problems

"Let "y=t^(12)+1 and x=t^(6)+1." Then "(d^(2)y)/(dx^(2)) is

let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

If t is a parameter and x=t^(2)+2t, y=t^(3)-3t , then the value of (d^(2)y)/(dx^(2)) at t=1 is -

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If x=a (cos t +t sin t)" and "y= a (sin t -t cos t) , find (d^(2)y)/(dx^(2)) .

If x=a (cos t + t sin t) and y=a ( sin t- t cos t) , find (d^(2)y)/(dx^(2))

If x=sin^(-1) t, y=log(1-t^(2)), 0 le t lt 1 , then the value of (d^(2)y)/(dx^(2)) at t=(1)/(3) is -

If a curve is represented parametrically by the equation x=f(t) and y=g(t)" then prove that "(d^(2)y)/(dx^(2))=-[(g'(t))/(f'(t))]^(3)((d^(2)x)/(dy^(2)))

If x=t^(2) and y=log t , find (dy)/(dx) .

If x=e^(t)sint and y=e^(t)cost , then the value of (x+y)^(2)(d^(2)y)/(dx^(2))-2x(dy)/(dx) is -