Home
Class 12
MATHS
int (dx)/((e^(x)-1)^(2))...

`int (dx)/((e^(x)-1)^(2))`

Text Solution

Verified by Experts

The correct Answer is:
`x-(1)/(e^(x)-1)-log|e^(x)-1|+c`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(1+e^(x))

int (dx)/(e^(x)+e^(-x))

int dx/(e^(x)(e^(x)+1)^(2)

int (dx)/(sqrt(2e^(x)-1))=2 sec^(-1)(sqrt(2)e^((x)/(2)))+c

The value of int (dx)/(sqrt(e^(2x)-1)) is equal to -

int(dx)/(1+e^((x)/(2)))

if int dx/(e^(x) (e^(x)+1)^(2))=(2e^(x)+1)/(e^(x)(e^(x)+1))+ k log|1+e^(-x)|+c then the value of k is -

Evaluate: int(dx)/(sqrt(2e^(x)-1))=

The value of int (e^(x)dx)/((e^(x)+2)(e^(x)+1)) is equal to -

int (e^(x)dx)/(sqrt(e^(2x)-a^(2)))