Home
Class 12
MATHS
int (e^(2x))/(e^(2x)+4)dx...

`int (e^(2x))/(e^(2x)+4)dx`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2)tan^(-1)((1)/(2)e^(x))+(1)/(4)log(1+4e^(-2x))+c`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(2x))/(e^(x)+1)dx

int (e^(x))/(1+e^(x))dx

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int(e^(2x)-1)/(e^(2x)+1)dx is eual to -

Evaluate: int(e^x)/(e^(2x)+4e^x+3)dx

int (e^(x)dx)/(e^(2x)+e^(x)-2)

If int (e^(x))/(e^(2x)+6e^(x)+5)dx=(1)/(lamda)log |(e^(x)+1)/(e^(x)+5)|+c , then the value of lamda is-

int e^(x)cos^(2) (e^(x))dx

Evaluate: int(e^x)/(e^(2x)+6e^x+5)dx

int e^(2-3x)dx