Home
Class 12
MATHS
int sqrt(cotx)dx...

`int sqrt(cotx)dx`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(sqrt(2))log|sinx+cos x+sqrt(sin2x)|+(1)/(Sqrt(2))sin^(-1)(sqrt(sin2x))+c`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int(sqrt(tanx)-sqrt(cotx))dx

Evaluate: underset (0)overset(pi/4)int (sqrt tanx + sqrt cotx)dx

Find int[sqrt(cotx)+sqrt(tanx)]dx

Prove that, int_(0)^((pi)/(2))(sqrt(tanx)+sqrt(cotx))dx=sqrt(2)pi

If I=int(sqrt(cotx)-sqrt(tanx))dx , is equal to (a) sqrt(2)"log"(sqrt(tanx)-sqrt(cotx))+C (b) sqrt(2)log|sinx|cosx+sqrt(sin2x)|+C (c) sqrt(2)log| sin x-cosx+sqrt(2) sin xcosx|+C (d) sqrt(2)log|sin(x+pi/4)+sqrt(2)sinxcosx|+C

The integral intsqrt(cotx)e^(sqrt(sinx))sqrt(cosx)dx equals

int sqrt(1+cosecx)dx

int (sqrt(x)dx)/(a+x)

int sqrt(1+sinx)dx " is equal to "

The value of int sqrt(2-3x) dx is-