Home
Class 12
MATHS
If f(x)=int (2 sinx-sin 2x)/(x^(3))[x ne...

If f(x)`=int (2 sinx-sin 2x)/(x^(3))[x ne 0]`, evaluate `underset(x to 0)limf'(x)`.

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate underset(xrarr0)(lim)(sinx-x)/(x^3)

Evaluate : underset(x rarr 0)lim (sin(x^(2)-x))/x

underset(x to 0)"Lt" sinx^@/x

Evaluate : underset(xrarr0)"lim"(sin^(-1)x)/(2x)

Let f RR rarr RR be differentiable at x = 0 . If f(0) = 0 and f'(0) = 2, then the value of underset(x rarr 0)lim (1)/(x)[f(x) + f(2x) + f(3x)+…+f(2015x)] is

f(x)= |{:(cos x,,x,,1),(2sin x ,,x,,2x),(sinx ,, x,,x):}| then find the value of underset(xto 0)(" lim ") (f(x))/(x^2)

If a f(x) +b f((1)/(x))=(1)/(x)-5,x ne 0,a ne b , then overset(2)underset(1)int f(x)dx equals

If underset(x rarr 0)lim (2a sin x - sin 2x)/(tan^(3)x) exists and is equal to 1, then the value of a is -

Evaluate : underset(x rarr 0) Lt (1+3x)^((x+2)/x)

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx