Home
Class 12
MATHS
If I(n)=int cos^(n)x dx, prove that, I...

If `I_(n)=int cos^(n)x dx`, prove that,
`I_(n)=(1)/(n)cos^(n-1)x sin x+(n-1)/(n).I_(n-2)`.Hence, evaluate,
`int cos^(5)x dx`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int sin^(n)x dx , show that, I_(n)=-(1)/(n) sin^(n-1)x cosx+(n-1)/(n).I_(n-2) . Hence, evaluate, int sin^(6)x dx .

Evaluate: If intcos^nxdotdx prove that I_n=1/n(cos^(n-1)xsinx)+((n-1)/n)I_(n-2)

If I_(n)=int (logx)^(n)dx , then the value of (I_(n)+nI_(n-1)) is -

Prove that, int_(0)^((pi)/(2))cos^(n)x cos nx dx=(pi)/(2^(n+1)) .

If I_n = int tan^n x dx , then prove that I_n = (tan^(n-1) x)/(n - 1) - I_(n - 2) . Hence find int tan^7 x dx

Evaluate: int (dx)/(x(x^n+1))

Let I_n=int_0^1x^ntan^(-1)xdx." Then prove that "(n+1)I_(n)+(n-1)I_(n-2)=pi/2-1/n"

Prove that int_(0)^(1)(dx)/(1+x^(n))gt1-(1)/(n)"for n"inN

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

If I_(n)=int_(0)^((pi)/(4)) tan^(n)x dx , then the value of (I_(8)+I_(6)) is -