Home
Class 12
MATHS
Putting b tan^(2)x=a tan^(2)theta, prove...

Putting `b tan^(2)x=a tan^(2)theta`, prove that,
`int (dx)/((a cos^(2)x+b sin^(2)x)^(2))=((a+b)theta)/(2(ab)^((3)/(2)))-(a-b)/(4(ab)^((3)/(2))).sin2 theta+c`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^4theta+tan^2theta=1 , prove that, cos^4 theta+cos^2theta=1

If x=a sin theta and y=b tan theta , then prove that (a^(2))/(x^(2))-(b^(2))/(y^(2))=1 .

If sec theta+tan theta = x , prove that sin theta= (x^2-1)/(x^2+1)

int_(0)^((pi)/(4))(dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)=(1)/(ab)tan^(-1).(b)/(a)(a,bge0)

If a sin x=b cosx=(2c tan x)/(1-tan^(2)x) , then prove that (a^(2)-b^(2))^(2)=4c^(2)(a^(2)+b^(2)).

If 7sin ^2theta +3cos^2theta =4 , prove that, tan theta =pm1/sqrt(3) .

"Prove that" tan (A+B) - tan (A - B) = (sin2 B)/(cos^(2)B - sin^(2) A).

If" " tan^(2) theta = 1 + 2 tan^(2) phi, "show that", cos 2theta + sin^(2) phi = 0.

sin^(3)theta = tan2theta + tantheta

If (a^(2)-b^(2))sin theta+2 ab cos theta-(a^(2)+b^(2))=0 , then prove that tan theta=(1)/(2)((a)/(b)-(b)/(a)) .