Home
Class 12
MATHS
int(0)^(1)log[sqrt(1-x)+sqrt(1+x)]dx...

`int_(0)^(1)log[sqrt(1-x)+sqrt(1+x)]dx`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2)[log2+(pi)/(2)-1]`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(dx)/(sqrt(x+1)-sqrt(x))

int_(0)^(1)sqrt((1-x)/(1+x))dx

int_(0)^(1) sqrt((1-x)/(1+x))dx is equal to -

int_(0)^(1)log((1)/(x)-1)dx

Evaluate int_(1)^(5)sqrt((x-2)sqrt(x-1))dx .

int_(0)^(1)log((1-x)/(x))dx=0

If int log(sqrt(1-x)+sqrt(1+x))dx=xf(X)+Ax+Bsin^(-1)x+c , then-

int_(0)^(1)log((1)/(x)-1)dx=

int_(0)^(1)x.sqrt((1-x^(2))/(1+x^(2)))dx=(pi-2)/(4)

int(dx)/(sqrt(1-2x)+sqrt(3-2x)) =