Home
Class 12
MATHS
int (0)^(pi/2) log(cotx)dx...

`int _(0)^(pi/2) log(cotx)dx`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)

int_(0)^((pi)/(2))log(tanx)dx=0

The value of int_(0)^((pi)/(2))log(tan x)dx is equal to -

The value of int_0^(pi/2)log(tanx)dx is

Prove that, int_(0)^(pi)log(1+cos x)dx=-pi log2 , given int_(0)^((pi)/(2))log((sin x))dx=(pi)/(2)"log"(1)/(2) .

int_(0)^((pi)/(2))(sqrt(cotx)dx)/(sqrt(cotx)+sqrt(tanx))

if I=int_0^(pi/2)( sin8xlog(cotx))/(cos2x)dx then I equals

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/4)log (1+ tan x) dx

The value of (dI)/(da) when I=int_(0)^(pi//2) log((1+asinx)/(1-asinx)) (dx)/(sinx) (where |a|lt1 ) is

By applying the result int_(0)^((pi)/(2))f(cosx)dx=int_(0)^((pi)/(2))f(sinx)dx , evaluate int_(0)^((pi)/(2))sin^(2)xdxandint_(0)^((pi)/(2))cos^(2)xdx .