Home
Class 12
MATHS
If m and n are integers and m ne n, then...

If m and n are integers and `m ne n`, then show that,
`int_(0)^(pi) sin mx cos nx dx={{:((2m)/(m^(2)-n^(2)),"when"(m-n)" is odd"),(0,"when"(m-n)"is even"):}`

Promotional Banner

Similar Questions

Explore conceptually related problems

If m and n are positive integers and m ne n , show : int_(0)^(pi)cosmxcosnxdx=0

If m and n are positive integers and m ne n , show : int_(0)^(2pi)sinmxsinnxdx=0

If m and n are positive integers and m ne n , show : int_(0)^(pi)cos^(2)mxdx={{:((pi)/(2),"when",mne0),(pi,"when",m=0):}

Prove that, int_(0)^((pi)/(2))cos^(n)x cos nx dx=(pi)/(2^(n+1)) .

m^(3)-n^(3)-m(m^(2)-n^(2))+n(m-n)^(2)

Prove that int_(-pi)^(pi)cosmxcosnxdx={{:(0,"when",mnen ne0),(pi,"when",m=n ne0),(2pi,"when",m=n=0):}

Prove that, int_(0)^(pi)sinmxsinnxdx={{:("0, when "mnen),((pi)/(2)", when m = n"):} where m and n are positive integers.

Find the reduction for I_m,n = int (sin x)^m (cos x)^n dx

If m = sqrtfrac(n)(n+1/2) and m = 1/2, then n =

If x+a is a factor of x^2+px+q and x^2+mx+n , show that a= (n-q)/(m-p) ​ .