Home
Class 12
MATHS
int(0)^(1) x logx dx...

`int_(0)^(1) x logx dx`

Text Solution

Verified by Experts

The correct Answer is:
`-1/4`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)3^(x)dx

int_(0)^(1)x^(3)dx

int_(0)^(1)log((1-x)/(x))dx=0

int_(0)^(1)cos^(-1)x dx

Integrate : int(cos^(-1)x+logx)dx

int_(0)^(1)e^(-x)dx

int_(0)^(1)2e^(x)dx

int_(1)^(e)(logx)^(2)dx

int_(a)^(b)(logx)/(x)dx=(1)/(2)log(ab)log((b)/(a))

The number of positive continuous f(x) defined in [0,1] for with I_(1)=int_(0)^(1)f(x)dx=1,I_(2)=int_(0)^(1)xf(x)dx=a , I_(3)=int_(0)^(1)x^(2)f(x)dx=a^(2) is /are