Home
Class 12
MATHS
int(0)^((pi)/(2))(cos^(2) x sin x)/(sqrt...

`int_(0)^((pi)/(2))(cos^(2) x sin x)/(sqrt(1+cos^(2)x))dx`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2)[sqrt(2)-log(sqrt(2)+1)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2)(cos^(3/2)x dx)/(sin^(3/2)x+cos^(3/2)x)

The value of int_(0)^((pi)/(2)) ((sinx+cosx)^(2))/(sqrt(1+sin2x))dx is equal to -

int_(0)^((pi)/(2))(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

evaluate: int_0^(pi/2) (cos^(3/2)x)/(sin^(3/2)x+cos^(3/2)x)dx

Prove that, int_(0)^((pi)/(2))cos^(n)x cos nx dx=(pi)/(2^(n+1)) .

int_(0)^((pi)/(2))(sinxcosxdx)/(2cos^(2)x+3sin^(2)x)

int(cos x - sin x)/sqrt (sin 2x) dx

Show that, int_(0)^((pi)/(2))(sin2x dx)/(sin^(4)x+cos^(4)x)=(pi)/(2)

int (cos x dx)/(sqrt(cos 2x))