Home
Class 12
MATHS
int(0)^(1)"tan"^(-1)(2x-1)/(1+x-x^(2))dx...

`int_(0)^(1)"tan"^(-1)(2x-1)/(1+x-x^(2))dx`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

STATEMENT 1 : The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2)) dx=0 STATEMENT 2 : int_a^bf(x)dx=int_0^bf(a+b-x)dx then Which of the following statement is correct ?

int_(0)^(1)x(tan^(-1)x)^(2)dx

The value of int_(0)^(1) tan^(-1)((1)/(x^(2)-x+1))dx is equal to -

Find the values of int_(0)^(1)sin^(-1).(2x)/(1+x^(2))dx(-1lexle1)

int_(-1)^(1)sin^(-1).(2x)/(1+x^(2))dx=0

If 2int_(0)^(1)tan^(-1)xdx=int_(0)^(1)cot^(-1)(1-x+x^(2))dx then int_(0)^(1)tan^(-1)(1-x-x^(2))dx is equal to

int_(0)^(1)tan^(-1)(1-x+x^(2))dx

The value of int_(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is____.

int_(0)^(1)(d)/(dx)["sin"^(-1)(2x)/(1+x^(2))]dx is equal to -