Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+…+C(n)...

If `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+…+C_(n)x^(n)`, show that,
`(2^(2).C_(0))/(1xx2)+(2^(3).C_(1))/(2xx3)+…+(2^(n+2).C_(n))/((n+1)(n+2))=(3^(n+2)-2n-5)/((n+1)(n+2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+…+C_(n)x^(n) , show that, (C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+…+(C_(n))/(n+1)=(2^(n+1))/(n+1)

If (1+x)^(n)=C_(0)+C_(1)+x+C_(2)x^(2)+...+C_(n)x^(n) show that, C_(0)-2^(2)*C_(1)+3^(2)*C_(2)-...+(-1)^(n)*(n+1)^(2)*C_(n)=0 (n gt 2)

If (1+x)^(n)=C_(0)+C_(1)+x+C_(2)x^(2)+...+C_(n) x^(n) Show that C_(1)^(2)+2*C_(2)^(2)+3*C_(3)^(2)....+n*C_(n)^(2)=((2n-1)!)/([(n-1)!]^(2))

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(0))/(1)+(C_(2))/(3)+(C_(4))/(5)+....=(2^(n))/(n+1)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+......+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(0))/(1)-(C_(1))/(2)+(C_(2))/(3)-......+(-1)^(n).(C_(n))/(n+1)=(1)/(n+1)

If (1+x)^n=sum_(r=0)^nC_rx^r prove that (2^2C_0)/(1 . 2)+(2^3C_1)/(2 . 3)+....+(2^(n+2) C_n)/((n+1)(n+2))=(3^(n+2)-2n-5)/((n+1)(n+2))

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(1))/(2)+(C_(3))/(4)+(C_(5))/(6)+....=(2^(n)-1)/(n+1)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(1))/(C_(0))+(2C_(2))/(C_(1))+(3C_(3))/(C_(2))+....+(nC_(n))/(C_(n-1))=(n(n-1))/(2)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0).C_(n)+C_(1).C_(n-1)+C_(2).C_(n-2)+....+C_(n).C_(0)=((2n)!)/((n!)^(2))