Home
Class 12
MATHS
Evaluate : int(-(pi)/(2))^((pi)/(2))[f(x...

Evaluate : `int_(-(pi)/(2))^((pi)/(2))[f(x)+f(-x)][g(x)-g(-x)]dx`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f: R to R and g: R to R be continuous function. Then the value of the integral int_(-pi/2)^(pi/2)[f(x)+f(-x)][g(x)-g(-x)]dxi s (a) pi (b) 1 (c) -1 (d) 0

Evaluate : int_(-(pi)/(2))^((pi)/(2))(acos^(2)x+bsin^(3)x)dx

Evaluate: int_(-(3pi)/2)^(-pi/2)[(x+pi)^3+cos^2(x+3pi)]dx

Find the value of int_(-(pi)/(2))^((pi)/(2)) f(x) dx, where f(x)={{:(sin^(2)x,"when "xgt0),(1-cosx,"when "xle0):}

Evaluate : int_(-1)^((3)/(2))|x sin pi x|dx

Evaluate : overset (pi//2) underseT (-pi//2) int [f(x)+f(-x)][g(x)-g(-x)]dx

Evaluate : int_(0)^(pi)(x^2 sin 2x sin ((pi)/(2) cosx))/(2x-pi)dx

Evaluate: int_-pi^pi ((2x)(1+sinx)/(1+cos^2x))dx

Evaluate: int_(-pi/4)^(pi/4)(x^9-3x^5+7x^3-x+1)/(cos^2x)dx

Evaluate: int_(-pi/4)^(pi/4)(x^9-3x^5+7x^3-x+1)/(cos^2x)dx