Home
Class 12
MATHS
Given (sin2kx)/(sin x)=2[cos x+cos 3x+…+...

Given `(sin2kx)/(sin x)=2[cos x+cos 3x+…+ cos(2k-1)x]`, where k is a positive integer, show that,
`int_(0)^((pi)/(2))sin2 kx cotx dx=(pi)/(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that, int_(0)^((pi)/(2))(sin2x dx)/(sin^(4)x+cos^(4)x)=(pi)/(2)

Show that, int_0^(pi/2)(sin 2x dx)/(sin^4x + cos^4 x) = pi/2

int _(0)^((pi)/(4)) (sin x+cos x)/(9+16 sin 2x)dx

Prove that for any positive integer k ,(sin2k x)/(sinx)=2[cosx+cos3x++cos(2k-1)x]dot Hence, prove that int_0^(pi/2)sin2x kcotxdx=pi/2dot

int_(0)^((pi)/(2))(sinxcosxdx)/(2cos^(2)x+3sin^(2)x)

int (sin 6x- sin 2x )/(cos 6x - cos 2x) dx

Prove that, int_(0)^(2pi)(xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx=pi^(2) .

If k is a positive integer, show that 2[ cos x+ cos 3x+ cos 5x+ ..+ cos (2k-1)x] = (sin 2kx)/(sin x)

int_(-pi)^(pi)(2x(1+sin x))/(1+cos^(2)x)dx