Home
Class 12
MATHS
Prove that, int(0)^(pi)log(1+cos x)dx=-p...

Prove that, `int_(0)^(pi)log(1+cos x)dx=-pi log2`, given
`int_(0)^((pi)/(2))log((sin x))dx=(pi)/(2)"log"(1)/(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))log(tanx)dx=0

int _(0)^(pi/2) log(cotx)dx

Evaluate: int_0^pi log(1+cosx)dx

int_(0)^(1)log((1)/(x)-1)dx=

int_(0)^((pi)/(2))(dx)/(4+5cosx)=(1)/(3)log2

int_(0)^(1)log((1)/(x)-1)dx

int_(0)^(1)log((1-x)/(x))dx=0

Prove that, int_(0)^(2pi)(cosx)/(1+sin^(2)x)dx=0

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)

Find I=int_0^pi ln(1+cosx)dx