Home
Class 12
MATHS
Evaluate : underset(n to oo) lim[((1+1...

Evaluate :
`underset(n to oo) lim[((1+1^(2)/n^(2)))(1+(2^(2))/(n^(2)))(1+(3^(2))/(n^(2)))…(1+(n^(2))/(n^(2)))]^((1)/(n))`

Text Solution

Verified by Experts

The correct Answer is:
`2e^((pi)/(2)-2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : underset(n to oo)lim(n)/((n!)^((1)/(n)))

Evaluate : underset(n to oo)lim [((2n)!)/(n!n^(n))]^((1)/(n))

Evaluate : underset(n to oo) lim[(1+(1)/(n))(1+(2)/(n))(1+(3)/(n))…(1+(n)/(n))]^((1)/(n))

Evaluate : underset(n to oo) lim[(1)/(n)+(1)/(n+1)+(1)/(n+2)+…+(1)/(3n)]

Evaluate : underset(n to oo) lim[(1)/(n)+(1)/(n+1)+(1)/(n+2)+…+(1)/(4n)]

Evaluate : lim_(nrarroo)[(1+(1)/(n^(2)))^((2)/(n^(2)))(1+(2^(2))/n^(2))^((4)/(n^(2)))(1+(3^(2))/(n^(2)))^((6)/(n^(2)))...(1+(n^(2))/(n^(2)))^((2n)/(n^(2)))]

Evaluate : underset(nrarroo)"lim"(n^(4)-n^(2)+6n+1)/(2n^(4)-5n+4)

Evaluate : underset(n to oo)lim (1)/(n)[sin (pi/(2n))+sin((2pi)/(2n))+sin((3pi)/(2n))+…+ sin((npi)/(2n))]

Find the value of underset(ntooo)lim[(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+(1)/(sqrt(n^(2)-3^(2)))+...+(1)/(sqrt(n^(2)-(n-1)^(2)))]

lim_(nrarroo) [(1^(2))/(n^(3)+1^(3))+(2^(2))/(n^(3)+2^(3))+(3^(2))/(n^(3)+3^(3))+...+(1)/(2n)]