Home
Class 12
MATHS
Solve : (dy)/(dx)=(cos(log(e^(x))))/(log...

Solve : `(dy)/(dx)=(cos(log_(e^(x))))/(log_(e^(y)))`

Text Solution

Verified by Experts

The correct Answer is:
`2y(log-1)=x[cos(logx)+sin(logx)+c`
Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(cos(logx))/(log_(e)y)

Solve : (dy)/(dx)=e^(y-x)+2

If y^(x)=e^(y-x)" prove that, " (dy)/(dx)=((logey)^(2))/(log y) .

Solve: (dy)/(dx)+y/x = e^x

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

Solve (dy)/(dx)+ 3y = e^(-2x)

If x^(y) =e^(x-y) , prve that , (dy)/(dx) =(logx)/((log ex)^(2)) .

If (d)/(dx)(log_(e)x)=(1)/(x) then (d)/(dx)(log_(10)x)=

Solve x log x(dy)/(dx) + y = 0

Evaluate: int{(1)/(log_(e)x)-(1)/((log_(e)x)^(2))}dx