Home
Class 12
MATHS
If int(0)^(x) f(t)dt=x+int(x)^(1)t f(t)d...

If `int_(0)^(x) f(t)dt=x+int_(x)^(1)t f(t)dt`, find the value of f(1).

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)t^2f(t)dt , then f((1)/(2)) is equal to

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of int_(-2)^(2)f(x)dx is

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is (a) [0,∞) (b) R (c) (−∞,0] (d) [−1/2,1/2]

Let f(x)=1/x^2 int_4^x (4t^2-2f'(t))dt then find the value of 9f'(4)

if int_0^(x^2(1+x))f(t)dt=x then the value of 10f(2) must be

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt , then the value of (23)/(3)f(0) is equal to-

If int_(sinx)^(1) t^(2) f(t) dt =1-sinx , then the value of f((1)/(sqrt(3))) is -