Home
Class 12
MATHS
e^(x-y)dx+e^(y-x)dy=0...

`e^(x-y)dx+e^(y-x)dy=0`

Text Solution

Verified by Experts

The correct Answer is:
`e^(x)=y(c-x^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve ( 1+e^(x).y) dx + xe^(x) dy = 0

The solution of differential equation y(1 + e^(x)) dx - e^(x) dy = 0

The solution of y e^(-x/y)dx-(x e^((-x/y))+y^3)dy=0 is

Solve y e^(x/y)dx=(x e^(x/y)+y^2)dy ,(y!=0)dot

(e^(x) + e^(-x))dy - (e^(x) - e^(-x)) dx = 0

(dy)/(dx)=e^(x-y)+x^(2)e^(-y)

(1+e^((x)/(y)))dx+e^((x)/(y))(1-(x)/(y))dy=0

If the curve satisfying (1+e^((x)/(y)))dx+e^((x)/(y))(1-(x)/(y))dy=0 passes through (1,1) then 9+y(2)e^((2)/(y(2)))-e is equal to-

The solution of the equation (dy)/(dx)+y=e^(-x), y(0)=0 is -

e^(x) tan y dx + (1 - e^(x))sec^(2)y dy = 0