Home
Class 12
MATHS
Show that the straight line x cosalpha+y...

Show that the straight line `x cosalpha+y sin alpha=p` is a tangent to the curve `(x^(m))/(a^(m))+(y^(m))/(b^(m))=1`, if
`(a cos alpha)^((m)/(m-1))+(b sin alpha)^((m)/(m-1))=p^((m)/(m-1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the straigjht line x cos alpha+ y sin alpha=p touches the curve x^(m)y^(n)=a^(m+n) , prove that. p^(m+n)""m^(m)n^(n)=(m+n)^(m+n)a^(m+n)sin^(n) alpha cos^(m) alpha

If x = m cosec alpha and y = n cot alpha , then the value of (x^2)/(m^2) - (y^2)/(n^2) is

If the line x cos alpha+y sin alpha= p touches the curve x^my^n= a^(m+n) prove that p^(m+n).m^m.n^n= a^(m+n)(m+n)^(m+n).cos^m alpha. Sin^n alpha .

Simply {(a^m)^(m-1/m)}^(1/(m+1))

The line y = mx + 1 is a tangent to the curve y^(2) = 4x if the value of m is

If y=a cos m x-b sin m x , then the value of (d^(2)y)/(dx^(2)) is -

If m is the slope of a tangent to the curve e^y=1+x^2, then (a) |m|>1 (b) m >1 (c) m >=-1 (d) |m|lt=1

If I_(m)=int_(1)^(e )(log_(e)x)^(m)dx , then the value of (I_(m)+mI_(m-1)) is -

If x prop y and y prop z, then show that (x^m+y^m+z^m) prop (x^3y^(m-3) +y^3z^(m-3)=z^3x^(m-3)) (m = constant)

If the equations y=m x+c and xcosalpha+ysinalpha=p represent the same straight line, then (a) p=csqrt(1+m^2) (b) c=psqrt(1+m^2) (c) c p=sqrt(1+m^2) (d) p^2+c^2+m^2=1