Home
Class 12
MATHS
intdx/(e^x+e^-x+2)...

`intdx/(e^x+e^-x+2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

if int dx/(e^(x) (e^(x)+1)^(2))=(2e^(x)+1)/(e^(x)(e^(x)+1))+ k log|1+e^(-x)|+c then the value of k is -

int dx/(e^(x)(e^(x)+1)^(2)

If f(x) = (e^x -e^-x)/(e^x +e^-x) + 2 , then the inverse function will be

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

If int (4e^x + 6e^-x)/(9e^x - 4e^-x) dx = Ax + B log_e(9e^(2x) - 4) + c then

Find int(2)/(e^(x)+e^(-x))dx.

intdx/(x(x^5 + 1))

int (e^(x)dx)/(e^(2x)+e^(x)-2)

If f (x) =(e^(x) -e ^(-x))/( e ^(x) +e^(-x)) +2, then the value of f ^(-1) (x) is-

The value of int ((e^(x)-e^(-x))dx)/((e^(x)+e^(-x))log(e^(x)+e^(-x))) is equal to -