Home
Class 12
MATHS
Prove that the function f(x)=kx(x^(2)+a^...

Prove that the function f(x)`=kx(x^(2)+a^(2))^(-(5)/(2))`has a maximum value at `x=(a)/(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

For the function f(x)=2x^2-In|x|

Prove that f(x)=cosx-1+(x^(2))/(2!)-(x^(4))/(4!) possesses a maximum value at x=0.

The function f(x)= 2x^(3) - 3x^(2) - 12x +4 has-

Show that the function f(x)=(2)/(3)x^(3)-6x^(2)+20x-5 has neither a maximum nor a minimum value.

The function f(x)=4x-x^(2)-3 has a maximum value at-

Show that the function 2x^(3)+3x^(2)-36x+10 has a maximum value at x=-3 and a minimum value at x=2 , also find the maximum and minimum values of the function.

The function f(x)=x^(2)+4x-2 has a minimum value at-

Find the domain of the function f(x)=(x^(2)+3x+5)/(x^(2)-5x+4)

The maximum value of the function f(x)=5-x-x^(2) is -

Show that the function f(x) = 2/3 x^3-6x^2+20x-5 has neither a maximum nor a minimum value.