Home
Class 12
MATHS
Investigate for maxima and minima of the...

Investigate for maxima and minima of the function
f(x)`=int_(1)^(x)[2(t-1)(t-2)^(3)+3(t-1)^(2)(t-2)^(2)]dt`.

Text Solution

Verified by Experts

The correct Answer is:
Max. at x=1, min at `x=(7)/(5)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Investigate for the maxima and minima of the function f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt

A minimum value of the function f(x) = int_(0)^(x) te^(-t^(2))dt is-

The range of the function f(x)=int_(-1)^(1)(sinxdt)/(1-2tcosx+t^(2)) is

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

Find the points of local maximum and local minimumof the function int_0^(x^2)(t^2-5t+4)/(2+e^t)dt .

The points for which the function f(x)=underset1overset"x"int{2(t-1)(t-2)^3+3(t-1)^2(t-2)^2} dt attins maxima and minima is :

The function f(x) =int_0^xsqrt(1-t^4) dt is such that

If f(t) is an odd function, then int_(0)^(x)f(t) dt is -

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x) = int_2^x f(t^2-3t+2) dt then