Home
Class 12
MATHS
Vectors veca,vecb and vec c are such tha...

Vectors `veca,vecb` and `vec c` are such that `vec a+vec b+vec c =vec0` and `|veca||=2,|vecb|=4` and `|vec c|=6`, prove that, `veca.vecb+vecb.vec c+vecc.veca=-28`.

Promotional Banner

Similar Questions

Explore conceptually related problems

The vectors veca,vecb,vecc are such that veca+vecb+vecc=vec0 , If |veca| =3 , |vecb|=4 and |vecc|= 5 , then show that veca.vecb+vecb.vecc+vecc.veca = -25

If the three vectors veca,vecb,vecc are such that veca+vecb+vecc=vec0" and " |veca|=3,|vecb|=4,|vecc|=5 , then show that veca*vecb+vecb*vecc+vecc*veca=-25 .

veca,vecb,vecc be three vectors such that veca+vecb+vecc=0" and "|veca|=1,|vecb|=4,|vecc|=2 . Evalute veca*vecb+vecb*vecc+vecc*veca .

The vectors vec(a),vec(b),vec (c ) are such that vec(a) + vec(b) + vec ( c ) = vec(0) . If |vec(a)| = 3 , |vec(b)|= 4 and |vec(c )|= 5 , show that vec(a).vec(b) +vec(b) .vec(c ) + vec (c ) . vec(a) = - 25

If vec a,vec b, vec c be three vectors such that vec a+vec b+vec c=0 , |veca|=3 , |vecb|=5 and |vecc|=7 find the angle between the vectors veca and vec b .

Three vectors vec(a),vec(b),vec (c ) are such that vec(a) + vec(b) + vec(c ) = vec(0) , if |vec(a)| = 1 |vec(b)| = 4 and |vec(c )|= 2 , then find the value of mu = (vec(a).vec(b) +vec(b).vec(c ) + vec(c ).vec(a))

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

If vectors veca, vecb and vecc are coplanar, show that |{:(veca, vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc):}|=vec0

If vec a+ vec b+ vec c = vec 0 then prove that vec axx vec b= vec bxx vec c = vec cxxvec a .

If vec a , vec b and vec c are such that veca xx vecb = vecc and vecb xx vec c = vec a , prove that veca , vecb and vecc are mutually perpendicular |vecb| =1 and |vecc| = |veca| .