Home
Class 12
MATHS
The value of sin(cos^(-1)x)-cos(sin^(-1)...

The value of `sin(cos^(-1)x)-cos(sin^(-1)x)` is

A

1

B

x

C

`(1)/(x)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2017

    CHHAYA PUBLICATION|Exercise UNIT -2|7 Videos
  • QUESTION PAPER 2017

    CHHAYA PUBLICATION|Exercise UNIT -3|21 Videos
  • QUESTION PAPER -2018

    CHHAYA PUBLICATION|Exercise WBJEE|45 Videos
  • QUESTIONS PAPER -2019

    CHHAYA PUBLICATION|Exercise WBJEE 2019|45 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y=pi , then the value of (sin^(-1)x+sin^(-1)y) is -

If x in [-1,0], then find the value of cos^(-1)(2x^2-1)-2sin^(-1)x

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

The value of sin^-1(cos(sin^-1x))+cos^-1(sin(cos^-1x)) where absx le 1 , is

Solve: sin^(-1) cos(sin^(-1)x) = pi/3 .

Find the value of sin^(-1)x+sin^(-1)(1/x)+cos^(-1)x+cos^(-1)(1/x)dot

The value of sin^(-1)(sin12)+cos^(-1)(cos12)=

Solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)

If sin x + sin ^(2)x =1, then the value of (cos ^(12) x+ 3 cos ^(10) x +3 cos ^(8) x+ cos ^(6)x) is-

Draw the graph of y=sin(sin^(-1)x) or y=cos(cos^(-1)x)