Home
Class 12
MATHS
If sec^(-1) x = "cosec" ^(-1) y , then...

If `sec^(-1) x = "cosec" ^(-1) y ,` then the valuw of `cos^(-1) ""(1)/(x) - sin ^(-1)""(1)/(y)` will be

A

0

B

`(2 pi)/(3)`

C

`(5pi)/(6)`

D

`(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • RELATION AND FUNCTIONS

    CHHAYA PUBLICATION|Exercise JEE main (AIEEE ) Archive|3 Videos
  • RELATION AND FUNCTIONS

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive|3 Videos
  • RELATION AND MAPPING

    CHHAYA PUBLICATION|Exercise Assertion Type|2 Videos
  • RELATIONS

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination (Assertion -Reason Type )|2 Videos

Similar Questions

Explore conceptually related problems

Solve sec^(-1) x gt cosec^(-1) x

Is sec^(-1)x= cosec^(-1)y , then the value of cos^(-1)(1/x)+cos^(-1)(1/y) will be

If "cosec"^(-1)x=sec^(-1)y , then the value of ("sin"^(-1)(1)/(x)+"sin"^(-1)(1)/(y)) is -

If sec^(-1)x=cos e c^(-1)y , then find the value of cos^(-1)(1/x)+cos^(-1)(1/y)

If sec^(-1)x = cosec^(-1)y state which of the following is the value of (cos^(-1)(1/x) + cos^(-1)(1/y)) ?

If sec ^(-1) x ="cosec" ^(-1) y . State which of the following is the value of ( cos ^(-1) ""(1)/(x)+cos ^(-1) ""(1)/(y )) ?

If cos^(-1)x+cos^(-1)y=pi , then the value of (sin^(-1)x+sin^(-1)y) is -

If "cosec" ^(-1) x = sin ^(-1) ((1)/(x)) then x may be -

Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a + b) then If 5 sec^(-1) x + 10 sin^(-1) y = 10 (a + b + c) then the value of tan^(-1) x + cos^(-1) (y -1) is

Draw the graph of y=sin^(-1)((1)/(x))