Home
Class 12
MATHS
If sin ^(-1) x+sin ^(-1) y+sin ^(-1) ...

If ` sin ^(-1) x+sin ^(-1) y+sin ^(-1) =pi` then prove that `xsqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz`

Promotional Banner

Topper's Solved these Questions

  • RELATION AND FUNCTIONS

    CHHAYA PUBLICATION|Exercise JEE main (AIEEE ) Archive|3 Videos
  • RELATION AND FUNCTIONS

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive|3 Videos
  • RELATION AND MAPPING

    CHHAYA PUBLICATION|Exercise Assertion Type|2 Videos
  • RELATIONS

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination (Assertion -Reason Type )|2 Videos

Similar Questions

Explore conceptually related problems

If sin ^(-1 )""x + sin ^(-1) y + sin ^(-1) z= pi prove that , x sqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt( 1-z^(2))= 2 xyz.

If sin^(-1)x+sin^(-1)y+sin^(-1)z = pi then prove that xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)= 2xyz .

if tan ^(-1) x+tan ^(-1) y+tan ^(-1) z=pi prove that x+y+z=xyz

if cos^(-1)x+cos ^(-1)y+cos^(-1) z=pi prove that x^(2) +y^(2)+z^(2) +2xyz=1

sin ^(-1)sqrt(3)x+sin ^(-1)x=(pi)/(2)

If x<0, then prove that cos^(-1)x=pi-sin^(-1)sqrt(1-x^2)

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) , then then the value of (x+y+z) is -

Prove that, 2 sin^(-1)x = sin^(-1) (2x sqrt (1-x^2))

Let x , y , z be non - zero real numbers lying in the interval [-1,1] such that cos^-1 x + cos^-1 y + cos^-1 z = pi The value of x sqrt(1 - x^2) + ysqrt(1 - y^2) + zsqrt(1 - z^2) is equal to

"if " sin^(-1) x +sin ^(-1) y+sin ^(-1) z=pi show that , x^(4)+y^(4)+z^(4)+4x^(2)y^(2)z^(2)=2(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2))