Home
Class 12
MATHS
Let tan ^(-1) y= tan ^(-1) x+ tan ^...

Let ` tan ^(-1) y= tan ^(-1) x+ tan ^(-1) ""((2x)/(1-x^(2)))`
where ` |x| lt (1)/(sqrt(3))`. Then a value of y is -

A

`(3x-x^(3))/(1+3x^(3))`

B

`(3x +x^(3))/(1+3x^(2))`

C

`(3x-x^(3))/(1-3x^(2))`

D

`(3x+x^(3))/(1-3x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • RELATION AND FUNCTIONS

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive|3 Videos
  • RELATION AND FUNCTIONS

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive|3 Videos
  • RELATION AND MAPPING

    CHHAYA PUBLICATION|Exercise Assertion Type|2 Videos
  • RELATIONS

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination (Assertion -Reason Type )|2 Videos

Similar Questions

Explore conceptually related problems

Let, tan^-1y=tan^-1x+tan^-1((2x)/(1-x^2)) , where absx lt 1/sqrt3 . Then a value of y is:

tan^(-1)x+tan^(-1) (1-x) = 2 tan ^(-1) sqrt(x(1-x))

Draw the graph of y=tan^(-1)((2x)/(1-x^(2)))

tan ^(-1)x-tan ^(-1)y=sin ^(-1) ""(x-y)/(sqrt((1+x^(2))(1+y^(2)))

If tan ^(-1) ""x + tan ^(-1) ""y + tan ^(-1) ""z=(pi)/(2) and x + y +z = sqrt(3) then show that x =y=z.

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/(sqrt(3))

Integrate : int "tan"^(-1)(2x)/(1-x^(2))dx(-1 lt x lt 1)

If tan^-1 x + tan^-1 2x + tan^-1 3x = pi , then:

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

"If " tan^(-1) x+ tan^(-1) y+tan ^(-1)z=(pi)/(2) , show that , xy+yz+zx =1