Home
Class 12
MATHS
Determine the matrices A and B, where ...

Determine the matrices A and B, where
`A+2B={:[(1,2,0),(6,-3,3),(-5,3,1)]` and `2A-B={:[(2,-1,5),(2,-1,6),(0,1,2)]:}`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A+2B=[(1,2,0),(6,-3,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)], then find tr(A)-tr(B).

Find the matrices A and B for which: {:2A+B={:[(1,2,3),(-1,-2,-3),(4,2,3)] and A+2B={:[(0,2,3),(4,1,7),(1,1,5)]

If A={:[(1,2,1),(1,-1,1),(2,3,-1)]and B={:[(1,4,0),(-1,2,2),(0,0,2)], find the matrix AB - 2B.

Verify that (AB)^(T)=B^(T)A^(T), where A={:[(1,2,3),(3,-2,1)]and B={:[(1,2),(2,0),(-1,1)] .

Find, where possible, A + B, A - B, AB and BA stating with reasons, where the operations are not pssible, when A={:[(4,2,-1),(3,-7,1)]:}and B={:[(2,3),(-3,0),(-1,5)]:}

If A=[(1,2,3),(2,3,1)] and B=[(3,-1,3),(-1,0,2)] , then find 2A-B .

For the matrices A and B, verify that (AB)'=B'A' , where (i) A=[(1),(-4),(3)], B=[(-1,2,1)] (ii)A=[(0),(1),(2)],B=[(1,5,7)]

Find A^(2)-5A+6I , if A=[(2,0,1),(2,1,3),(1,-1,0)]

When are two matrices A and B said to be conformable for the product AB? If A={:((1,2,3),(1,3,3),(1,2,4))and B={:((6,-2,-3),(-1,1,0),(-1,0,1)) show that, AB = BA. Is it, in general, true for matrix multiplication? Give an example to justify your answer.