Home
Class 12
MATHS
Verify that the matrix equation A^(2)-4A...

Verify that the matrix equation `A^(2)-4A+3I = 0 ` is satisfied by the matrix
`A={:[(2,-1),(-1,2)]," where " I={:[(1,0),(0,1)]and`
`0={:[(0,0),(0,0)].` Hence obtain `A^(-1).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A={:[(0,-1),(1,0)]:} and B={:[(0,i),(i,0)]:} , then

If A^(2)-A+I=0 then the inverse of the matrix A is

If A={:((1,4),(2,3)), show that, A^(2)-4A-5I=0 where I={:((1,0),(0,1))and 0={:((0,0),(0,0)).

If A={:[(1,0),(-1,7)] and I={:[(1,0),(0,1)] , then find k so that A^(2)=8A+kI

If I={:((1,0),(0,1)):} and E={:((0,1),(0,0)):} prove that, (2I+3E)^(3)=8I+36E.

Find the matrix A satisfying the matrix equation [{:(2,1),(3,2):}]A[{:(-3,2) ,(5,-3):}]=[{:(1,0),(0,1):}]

If A = ((3,1),(-1,2)), I = ((1,0),(0,1)) and O = ((0,0),(0,0)) show that, A^(2) - 5A + 7I = O . Hence find A^(-1) .

If A={:((4,2),(-1,1))and I={:((1,0),(0,1)), prove that, (A-2I)(A-3I)={:((0,0),(0,0)).

If A = [[3,1],[-1,2]],I= [[1,0],[0,1]] and O = [[0,0],[0,0]] show that A^2-5A+7I=0 . Hence find A^(-1) .

If A=({:(1,4),(2,3):}) , then show that A^(2)-4A-5I=0 ,where I=({:(1,0),(0,1):}) " and " O=({:(0,0),(0,0):}) .