Home
Class 12
MATHS
If A={:[(1,1,1),(0,1,1),(0,0,1)], Prove ...

If `A={:[(1,1,1),(0,1,1),(0,0,1)]`, Prove by mathematical induction that,
`A^(n)={:[(1,n,(n(n+1))/2),(0,1,n),(0,0,1)]`for every positive integer n.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A={:[(a,b),(0,1)]:}, prove by mathematical induction that, A^(n)= [{:(,a^(n), (b(a^(n) -1))/(a-1)),(,0,1)]:} for every positive integer n.

If A={:[(1,2),(0,1)]:} show, by mathematical induction, that A^(n)={:[(1,2n),(0,1)]:} for all n in N.

if A={:[(1,1,1),(1,1,1),(1,1,1)]:}, prove by mathematical induction that, A^(n)={:[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]:} for every positive integer n.

Let A=({:(1,1,1),(0,1,1),(0,0,1):}) . Then for positive integer n, A^n is

By the principle of mathematical induction prove that 1+2+3+4+…n= (n(n+1))/2

Prove by mathematical induction that 1/1.3+1/3.5+1/5.7+...+1/((2n-1)(2n+1)) = n/(2n+1),(n in N)

Prove by mathematical induction. 1/1.3+1/3.5+1/5.7+....+1/((2n-1)(2n+1))=n/(2n+1)

Prove by mathematical induction 1^(2)+2^(2)+3^(2)+.....+(n+1)^(2)=((n+1)(n+2)(n+3))/(6)

Prove by mathematical induction, n.1+(n-1).2+(n-2).3+…+2.(n-1)+1.n = (n(n+1)(n+2))/6 where n in N .

Prove by mathematical induction that, 1^(2)-2^(2)+3^(2)-4^(2)+ . . .. +(-1)^(n-1)*n^(2)=(-1)^(n-1)*(n(n+1))/(2),ninNN .