Home
Class 12
MATHS
Find the matrices A and B for which: ...

Find the matrices A and B for which:
`{:2A+B={:[(1,2,3),(-1,-2,-3),(4,2,3)] and A+2B={:[(0,2,3),(4,1,7),(1,1,5)]`

Text Solution

Verified by Experts

The correct Answer is:
`A=1/3 {:[(2,2,3),(-6,-5,-13),(7,3,1)]:}` and `B=1/3 {:[(-1,2,3),(9,4,17),(-2,0,7)]:}`
Promotional Banner

Similar Questions

Explore conceptually related problems

Determine the matrices A and B, where A+2B={:[(1,2,0),(6,-3,3),(-5,3,1)] and 2A-B={:[(2,-1,5),(2,-1,6),(0,1,2)]:} .

Find the matrices A and B for which: A-2B={:((-7,7),(4,-8)) and A-3B={:((-11,9),(4,-13))

If A={:[(0,2,3),(2,1,4)]andB={:[(7,6,3),(1,4,5)] , find 2A+3B.

When are two matrices A and B said to be conformable for the product AB? If A={:((1,2,3),(1,3,3),(1,2,4))and B={:((6,-2,-3),(-1,1,0),(-1,0,1)) show that, AB = BA. Is it, in general, true for matrix multiplication? Give an example to justify your answer.

If A={:[(2,-1),(3,2)]:} and B={:[(0,4),(-1,7)]:}, find 3A^(2)-2B+I

Given A =[(1,-1,1),(1,-2,-2),(2,1,3)] & B = [(-4,4,4),(-7,1,3),(5 , -3,-1)] Find AB

If A=[(1,2,3),(2,3,1)] and B=[(3,-1,3),(-1,0,2)] , then find 2A-B .

For the matrices A and B, verify that (AB)'=B'A' , where (i) A=[(1),(-4),(3)], B=[(-1,2,1)] (ii)A=[(0),(1),(2)],B=[(1,5,7)]

Find, where possible, A + B, A - B, AB and BA stating with reasons, where the operations are not pssible, when A={:[(4,2,-1),(3,-7,1)]:}and B={:[(2,3),(-3,0),(-1,5)]:}

If A={:[(1,2,1),(1,-1,1),(2,3,-1)]and B={:[(1,4,0),(-1,2,2),(0,0,2)], find the matrix AB - 2B.