Home
Class 12
MATHS
If A=[1,2,3], " write " "AA"^(T)...

If `A=[1,2,3], " write " "AA"^(T)`

Text Solution

Verified by Experts

The correct Answer is:
[14]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A={:[(1,1),(2,2),(3,3)], find "AA"^(T).

If A=1/3({:(-1,2,-2),(-2,1,2),(2,2,1):}) , show that "AA"^(T)=I_(3) .

If A=(1)/(3){:[(-1,2,-2),(-2,1,2),(2,2,1)] show that "AA"^(T)=I .

If A={:[(-1),(2),(3)]:} and B=[-2" "-1" "-4] then verify that (AB)^(T)=B^(T)A^(T).

If A=[[1,2,5].[-1,3,-4]] and B= [[3,-2,1],[0,-1,4],[5,2,-1]] show that (AB)^T=B^TA^T were A^T is the transpose of A.

If A={:[(1,2,5),(-1,3,-4)]:} and B={:[(3,-2,1),(0,-1,4),(5,2,-1)]:}, show that, (AB)^(T)=B^(T)A^(T) where A^(T) is the transpose of A.

If A = ((3,1),(0,2)) show that (A^(T))^(-1) = (A^(-1))^(T) where A^(T) is the transpose of A .

If t_n=1/4(n+2)(n+3) for n=1, 2 ,3,.... then 1/t_1+1/t_2+1/t_3+....+1/(t_(2003))=

The base of a triangle is divided into three equal parts. If t_1, t_2,t_3 are the tangents of the angles subtended by these parts at the opposite vertex, prove that (1/(t_1)+1/(t_2))(1/(t_2)+1/(t_3))=4(1+1/(t2 2))dot

If t is a parameter and x=t^(2)+2t, y=t^(3)-3t , then the value of (d^(2)y)/(dx^(2)) at t=1 is -