Home
Class 12
MATHS
Solve for x, y and z, if {:((x+y,2),(1,0...

Solve for x, y and z, `if {:((x+y,2),(1,0))={:((2,x-z),(2x-y,0)):}`

Text Solution

Verified by Experts

The correct Answer is:
x = 1, y = 1,z = -1
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x, y and z : sin^2 x + cos^2 y = 2 sec^2 z

|{:(" "0," "x,y),(-x," "0,z),(-y,-z,0):}|=0

Find the values of x, y, z if the matrix A=[(0, 2y,z),(x,y,-z),(x,-y,z)] satisfy the equation A'A=I .

|{:(x,z,0),(0,y,y),(z,0,x):}|

Solve for x by Cramers rule x+y+z=6 , x-y+z=2 3x+2y-4z=-5

if x+y+z=0 , then show that, |{:(1,1,1),(x,y,z),(x^3,y^3,z^3):}|=0

If a x_1^2+b y_1^2+c z_1^2=a x_2 ^2+b y_2 ^2+c z_2 ^2=a x_3 ^2+b y_3 ^2+c z_3 ^2=d ,a x_2 x_3+b y_2y_3+c z_2z_3=a x_3x_1+b y_3y_1+c z_3z_1=a x_1x_2+b y_1y_2+c z_1z_2=f, then prove that |(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3,y_3,z_3)|=(d-f){((d+2f))/(a b c)}^(1//2)

if x+y+z = 0 then prove that |{:(x,y,z),(x^2,y^2,z^2),(y+z,z+x,x+y):}|=0

If x,y,z are all distinct and if abs((x,x^2,1+x^3),(y,y^2,1+y^3),(z,z^2,1+z^3)) =0,show that xyz+1=0

If f(x+y+z)=f(x) f(y) f(z) ne 0 for all x,y,z and f(2)=5, f'(0)=2, find f'(2).