Home
Class 12
MATHS
Prove that the product of the matrices ...

Prove that the product of the matrices
`{:[(cos ^(2)alpha,cos alpha sin alpha ),(cos alpha sinalpha, sin^(2)alpha)]and {:[(cos ^(2)beta,cosbetasinbeta),(cos betasinbeta,sin^(2)beta)]`
is the null matrix when `alpha and beta` differ by an odd multiple of `(pi)/(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Provet that the producet of the matrics [[cos^2 alpha cos alpha sin alpha], [ cos alpha sin alpha sin^2 alpha]] and [[cos^2 beta cos beta sin beta], [ cos beta sin beta sin^2 beta]] is the null matrix when alpha and beta differ by an odd multiple of pi / 2 .

Prove that, (cos alpha + sin alpha)/(cos alpha -sin alpha)-(cos alpha - sin alpha)/(cos alpha + sin alpha) = 2 tan 2 alpha

Prove that, (1+ cos 2 alpha + sin 2 alpha)/(1-cos 2 alpha +sin 2 alpha)=cot alpha

Find the value of sin^6 alpha+ cos^6 alpha+ 2sin^2 alpha cos^2 alpha .

Prove that, (sin alpha + cos alpha)/(cos alpha-sin alpha)=tan2 alpha + sec 2 alpha

|{:(cosalpha cos beta,cos alpha sin beta ,-sin alpha),(-sin beta,cos beta," "0),(sin alpha cosbeta ,sinalpha sin beta ,""cos alpha):}|

Evaluate {:|( cos alpha cos beta , cos alpha sin beta , -sin alpha ),( -sin beta , cos beta, 0),( sin alpha cos beta, sin alpha sin beta, cos alpha ) |:} =0

Prove the following identities: (cos alpha cos beta+sin alphasin beta)^2+(sinalphacos beta-cos alphasinbeta)^2=1

If" " tan theta = (sin alpha - cos alpha)/(sin alpha + cos alpha),"prove that",2 cos^(2) theta = 1 + sin 2 alpha.