Home
Class 12
MATHS
If A={:[(3,-2),(4,-2)], find k such that...

If `A={:[(3,-2),(4,-2)],` find k such that `A^(2)=kA-2I_(2)`

Text Solution

Verified by Experts

The correct Answer is:
K = 1
Promotional Banner

Similar Questions

Explore conceptually related problems

If A={:[(3,-5),(-4,2)], find A^(2)-5A-14I.

If A = [(2,2),(4,3)] show that, A A^(-1) =I_(2) wher I_(2) is the unit matrix of order 2.

If A={:[(1,x,-2),(2,2,4),(0,0,2)]:} and A^(2)+2I_(3)=3A find x, here I_(3) is the unit matrix of order 3.

If A = [(3+2i, i),(-i,3-2i)] then find A^-1

If the matrix A = [(1,2),(3,4)] satisfies the equation A^(2) = 5A + 2I . Then, find the value of A^-1 .

If A={:[(2,-1),(3,2)]:} and B={:[(0,4),(-1,7)]:}, find 3A^(2)-2B+I

If A = [[2,2],[4,3]] show that A A^(-1) = I_2 where I_2 is the unit matrix of order 2.

If A=[(3, sqrt(3), 2),(4,2,0)] and B=[(2,-1,2),(1,2,4)] , verify that (i) (A')'=A, (ii) (A+B)'=A'+B' , (iii) (kB)'=kB' , where k is any constant.

If A=({:(2,-1),(-1,2):}) " and " A^(2)-4A+3I=0 where I is the unit matrix of order 2, then find A^(-1) .

Matrices a and B satisfy AB=B^(-1) , where B=[(2,-1),(2,0)] . Find (i) without finding B^(-1) , the value of K for which KA-2B^(-1)+I=O . (ii) without finding A^(-1) , find the matrix X satifying A^(-1) XA=B .